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LETTER TO THE EDITOR 

Scaling and eigenstates for a class of one-dimensional 
quasiperiodic lattices 

Godfrey Gumbs and M K Ali 
Department of Physics, University of Lethbridge, Lethbridge, Alberta, T1 K 3M4 Canada 

Received 4 January 1988 

Abstract. Numerical and analytical calculations of the electronic properties of a one- 
dimensional quasiperiodic lattice are presented. The lattice consists of two types of bonds 
A and B whose distribution follows the recursion formula S,,, = S;”,S; where m, n = 
1 , 2 , 3 , .  . . and S, is a building block sequence for I2 2. An exact evaluation of the 
wavefunction yields the scaling for several pairs of values of m and n. Numerical calcula- 
tions of the wavefunction and the resistance reveal a rich self-similar structure as well as 
localisation for one of the quasiperiodic sequences studied. 

In this letter, we report the results of calculations of the electronic eigenstates of the 
tight-binding model [ 1,2] 

where $f denotes the wavefunction for a state with energy E at the Ith lattice site and 
{T , }  is a quasiperiodic sequence with two kinds of hopping matrix elements TA and 
TB. M (  T,, q )  is a transfer matrix given by 

( E  I T,  - T I T ?  
0 

M ( T , ,  T, )=  
1 

Successive applications of the transfer matrices give the wavefunction at arbitrary sites. 
The main problem is therefore to calculate the product of matrices 

M ( 0  = M(T,+l, T / ) M ( T / ,  T/- l ) ,  * a ,  M ( T 2 ,  TI). (3) 

The quasiperiodic lattices we investigate here are, in some sense, a generalisation 
of the Fibonacci lattice. When F/ is a generalised Fibonacci number given recursively 
by Fltl = mF/-,+ nF/ where m and n are positive integers and F,= F ,  = 1, M ( I )  can 
be obtained recursively. With MI = M ( F , ) ,  we obtain 

M/+1= M F l M ;  (4) 
where M I  = M (  TA,  TA) and M 2  = M (  TA, T B ) M (  T’, TA).  The recursion relation in (4) 
is extremely useful in carrying out numerical calculations. In addition, this recursion 
formula defines a non-linear dynamical map for which we could apply the concept of 
dynamical systems. Defining xi = f Tr M,, where Tr( . . . ) denotes the trace of a matrix, 
we have explicitly calculated the recursion relation for xI for four pairs of values of 
m and n. These are now given. 
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For m = 1 and n = 1, the ratio of successive Fibonacci numbers F,+,/F, tends to 
the golden mean uG = (51'2+ 1)/2 in the limit l+ CO. The map for the trace is well 
known and is given by x,+, = 2x1x1-, - x!-~.  

For m = 1 and n = 2, the ratio of successive Fibonacci numbers tends to the silver 
mean us = 21/2+ 1. The dynamical map is obtained by taking the trace of the equation 

M,,,+M,-,= M / - l M l ( M / + M / - l ) .  ( 5 )  

%+I = 4x/tr+i - X I - ,  ( 6 a )  

tr+1 = XI-lXI - tl ( 6 b )  

Defining tl = Tr(M,-2M,-.1)/4, we obtain the pair of equations 

subject to the initial conditions t2 = x, T,/(2TB). Whenever the recursion relations (6) 
are satisfied, the quantity 

I, = x;+ x:+, + 4t:+2 -4x,x,+, tlt2 - 1 ( 6 c )  

is unchanged by successive iterations. 
For m = 1 and n = 3, the ratio of successive Fibonacci numbers tends to the bronze 

mean uB=(13'I2+3)/2. In this case, the dynamical map is obtained by taking the 
trace of the equation 

M,+, + (M,-,M/-1+ M/-2) - MI-2 = M,-,M,(M:+ (7)  

X I + ,  = (4x:- 1)gl+l-2xl-,x/ ( s a )  

g/+, = 2x/-l(x/ -g,) +x/-2 ( 8 b )  

I B  = x7-1 + x:+ g?+l -2x1-,X/g,+, - 1. ( 8 c )  

x/+1= (4&, -2)x, + y 

This yields 

where g, = Tr(Ml-2M,-l)/2. The map in (8) has a constant independent of 1 given by 

When m = 2 and n = 1, the trace map takes the form? 

(9) 

where y is independent of 1 and given by y = x2 - Ex, /  TB. In this case, the ratio of 
successive terms Fl+JFI tends to the copper mean uc = 2. 

We consider the electron wavefunction at the centre of the band, E = 0. A detailed 
study of the eigenfunction and allowed band energy for the Fibonacci lattice with the 
golden mean has been presented in the literature [l, 31. For the quasiperiodic lattices 
with the silver, bronze and copper means, the magnitude of the wavefunction is plotted 
in figures 1-3, as a function of the lattice site number along the quasiperiodic lattice 
for E = 0 and R = TB/  TA. While the wavefunction in figures 1 and 2 are self-similar, 
like the wavefunction for the Fibonacci lattice with the golden mean, and are neither 

i Equation (9) is obtained by writing the recursion relation for the matrices in (4) for m = 2 and n = 1 as 

M,+,+M;_ZIM, =(M:-,+M;_,)M, 

and taking the trace of this equation. This gives the trace map in (9) with the last term defined by 

y =  -fTr(M;?,M,). 

Whenever the recursion relation for the transfer matrices is satisfied this quantity is independent of 1. Thus 
y is determined from the initial conditions and is an invariant for the map with the copper mean. 
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n 

Figure 1. The electronic wavefunction at E = 0 0. The figure is a plot 
of the magnitude of the wavefunction l $ H l  against the site number n along the quasiperiodic 
direction for the lattice with the silver mean. We choose Go = 0 and $, = 1.  
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r = TB/ TA = 

n 

Figure 2. Same as figure 1 for the wavefunction at the centre of the band E = 0 for the 
lattice with the bronze mean. 

extended nor localised in a standard way, the lattice with the copper mean is indeed 
localised. This result is one of the main results of this letter since this type of localisation 
has never been exhibited for a one-dimensional quasiperiodic lattice structure. The 
series of peaks in figures 1 and 2 have values which increase as a power of R. This 
power law behaviour could be calculated in the way adopted by Kohmoto and Banavar 
[3] for the Fibonacci lattice with the golden mean. For the silver mean, consider the 
transfer matrix 
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Figure 3. Same as figure 1 for the lattice with the copper mean except that R = 0.95. 

n 

Figure 4. The resistance against site number for E = O  corresponding to the Fibonacci 
lattice with the silver mean. 

where p is an integer and 
N = F3 + F, + F, + F9 +. . . + F4p+l (11) 

(LN = (-l)PR2P+o. (12) 

( N  = 48, 1680, 57 120, , . . ). Equation (10) gives a series of peaks 

For large values of N, it is a simple matter to show that (12) yields the power law 
behaviour 

I (LN I - NP”(L0 (13) 
where ps = In R/ln os2 is the scaling exponent for the lattice with the silver mean. The 
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wavefunction at E = 0 for the Fibonacci lattice with the bronze mean could be calculated 
exactly at the lattice sites N = F3+ F 6 + .  . .+ F 3 x 2 p .  For large values of N, this 
wavefunction has a power law behaviour with the exponent in (13) replaced by 
pB = 2 In R / 3  In uB. For the lattice with the copper mean, the wavefunction for the 
special energy E = 0 could be obtained by a simple formula at the lattice sites with a 
Fibonacci number. Numerical calculations show that the plot of wavefunction at E = 0 
against the lattice site along the chain is monotonic. This is shown in figure 3. Thus 
the lattice with the copper mean is the only one of the cases studied so far which 
shows this type of behaviour for the wavefunction. 

We now turn to the resistance of the tight-binding model in (1) for a linear chain 
with N lattice sites. This quantity, defined as the ratio between total reflection and 
transmission coefficients, is given by [4-61 

where 1) M N  1 1 2  is the sum of the squares of the elements of the 2 x 2 matrix M N  = M (  N )  
defined in (3). We also define the energy in terms of the wavevector k by E = 2T0 cos k, 
where the hopping matrix elements are equal to a constant To outside the disordered 
segment 1 IS N. Following the arguments above for the wavefunction, the power 
law behaviour and scaling of the p could be obtained for the lattice with the silver 
and bronze means as derived in [6] for the golden mean. In figure 4, R = 2.0. 

The non-periodicity of the lattice with the copper mean is obviously strong enough 
to cause the wavefunction to decay as a function of distance from the origin. However, 
the localisation is not as strong as the localisation in the one-dimensional disordered 
system which was conjectured by Mott and Twose [7] and proven by others [8,9]. 
For this kind of (Anderson) localisation, the envelope of the amplitude of the wavefunc- 
tion decays exponentially from some point in space (see the review of Lee and 
Ramakrishnan [ 101 and the very clear presentation by Tong [ 111 for localisation in a 
one-dimensional model having disorder). Subsequently, we conclude that the class of 
lattices given recursively by (4) could be divided up into two subclasses depending on 
the localisation properties of the wavefunction. This separation of the lattices was 
also evident by studying the dynamical maps for the traces of the matrices [12]. 
Additional numerical and analytical calculations dealing with ternary strings will be 
published elsewhere. 

This work is based on research supported by NSERC of Canada. 
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